Modeling the Effect of the Spatial Pattern of Airborne Lidar Returns on the Prediction and the Uncertainty of Timber Merchantable Volume
نویسندگان
چکیده
Lidar data are regularly used to characterize forest structures. In this study, we determine the effects of three lidar attributes (density, spacing, scanning angle) on the accuracy and the uncertainty of timber merchantable volume estimates of balsam fir stands (Abies balsamea (L.) Mill.) in eastern Canada. We used lidar point clouds to compute predictor variables of the merchantable volume in a nonlinear model. The best model included the mean height of first returns, the proportion of first returns below 2 m and the canopy surface roughness index. Our analysis shows a high correlation between lidar and field data of 119 plots (pseudo-R2 = 0.91), however, residuals were heteroscedastic. More precise parameter estimates were obtained by adding to the model a variance function of variables describing the mean height of returns and the skewness of the area distribution of triangulated lidar returns. The residual standard deviation was better estimated (3.7 m3 ha−1 multiplied by the variance function versus 28.0 m3 ha−1). We found no effect of density on the predictions (p-value = 0.74). This suggests that the height and the spatial pattern of returns, rather than the density, should be considered to better assess the uncertainty of merchantable volume estimates.
منابع مشابه
Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملتأثیر تغییرات مکانی بارندگی بر پیشبینی هیدروگراف سیلاب در حوضههای آبریز کوهستانی
In this study, the influence of spatial heterogeneity of rainfall on flood hydrograph prediction in three mountainous catchments in south west of Iran was studied. Two interpolation techniques including Thiessen polygons method and Inverse Distance Weighting method were applied to compare the rainfall patterns of surrounding rain-gages in hydrograph simulation with rainfall patterns of nearest ...
متن کاملSpatial Panel Pattern Modeling in the Analysis of Saffron Foreign Trade Network
One of the factors that have a significant impact on the economic development of countries is reliance on foreign trade, and due to the dependence of countries on export earnings and the import of foreign trade, it plays an essential and indisputable role in the growth and development of different sectors. Foreign trade in agricultural products has an important role in expanding the export...
متن کاملIntegration of Visible Image and LIDAR Altimetric Data for Semi-Automatic Detection and Measuring the Boundari of Features
This paper presents a new method for detecting the features using LiDAR data and visible images. The proposed features detection algorithm has the lowest dependency on region and the type of sensor used for imaging, and about any input LiDAR and image data, including visible bands (red, green and blue) with high spatial resolution, identify features with acceptable accuracy. In the proposed app...
متن کاملLidar and Multispectral Imagery Classifications of Balsam Fir Tree Status for Accurate Predictions of Merchantable Volume
Recent increases in forest diseases have produced significant mortality in boreal forests. These disturbances influence merchantable volume predictions as they affect the distribution of live and dead trees. In this study, we assessed the use of lidar, alone or combined with multispectral imagery, to classify trees and predict the merchantable volumes of 61 balsam fir plots in a boreal forest i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017